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Abstract
We consider the gauge invariance of the standard Yang–Mills model in the
framework of the causal approach of Epstein–Glaser and Scharf and determine
the generic form of the anomalies. The method used is based on the
Epstein–Glaser approach to renormalization theory. In the case of quantum
electrodynamics we obtain quite easily the absence of anomalies in all orders.

PACS numbers: 11.15.-q, 12.20.-m

1. Introduction

The causal approach to renormalization theory of by Epstein and Glaser [31,32] had produced
important simplification of the renormalization theory at the purely conceptual level as
well as to the computational aspects. This approach works for quantum electrodynamics
(QED) [22,37,53] where it brings important simplifications of the renormalizability proof. For
Yang–Mills theories [3,5,17,18,24,25,27–29,34–36,41–44,46,55] one can determine severe
constraints on the interaction Lagrangian (or in the language of the renormalization theory—on
the first-order chronological product) from the condition of gauge invariance. Gravitation can
be also analysed in this framework [33,39,40,62], etc. Finally, the analysis of scale invariance
can be performed [38, 51]. One should stress the fact that the Epstein–Glaser analysis uses
exclusively the Bogoliubov axioms of renormalization theory [12] imposed on the scattering
matrix: this is an operator acting in the Hilbert space of the model, usually generated from the
vacuum by the quantum fields. If one considers the S-matrix as a perturbative expansion in the
coupling constant of the theory, one can translate these axioms on the chronological products.
Epstein–Glaser approach is a inductive procedure to construct the chronological products in
higher orders starting from the first order of perturbation theory. For gauge theories one can
construct a non-trivial interaction only if one considers a larger Hilbert space generated by
the fields associated with the particles of the model and the ghost fields. The condition of
gauge invariance becomes in this framework the condition of factorization of the S-matrix to
the physical Hilbert space in the adiabatic limit. To avoid infra-red problems one works with
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a formulation of this factorization condition which corresponds to a formal adiabatic limit and
it is perfectly rigorously defined [25] and exploited in detail in [17, 24–30]. The obstructions
to the implementation of the condition of gauge invariance are called anomalies. The most
famous is the Adler–Bell–Bardeen–Jackiw anomaly [1, 6, 7, 10] (see [50] for a review). We
mention the fact that in the Epstein–Glaser approach to renormalization theory one starts with
a fixed Fock space (in which the scattering matrix lives); this means that the masses of the
particles are fixed from the very beginning. This means that one can describe the phenomena
of radiative mass generation only if one works with interacting fields.

The classical analysis of the renormalizability of Yang–Mills theories of Becchi et al [11]
is based on a different combinatorial idea. Namely, one considers a perturbative expansion in
Planck constant h̄ which is equivalent, in Feynman graphs terminology, to a loop expansion.
(The rigorous connection between these two perturbation schemes has been recently under
investigation [23].) One can formulate the condition of gauge invariance in terms of the
generating functional for the one-particle irreducible Feynman amplitudes; the S-matrix is
then recovered using the reduction formulæ [52]. Presumably, both formulations lead to the
same S-matrix, up to finite renormalization, although this point is not firmly established in the
literature. The most difficult part is to prove that if there are no anomalies in lower orders of
perturbation theory, then the anomalies are absent in higher orders. The main tool of the proof
is the consideration of the scale invariance properties of a quantum theory expressed in the
form of Callan–Symanzik equations [13–15]. A mathematical analysis was developed in [60]
and [61], using the quantum action principle [48] (for a review see [52]). One should stress
the fact that in this approach one works with interaction fields which can be defined as formal
series in the coupling constant. The main observation used in these references is the existence
of anomalous dimensional behaviour of the (interacting) fields with respect to dilations. Based
on this analysis in [9] (see also [11] and [52]) it is showed that the ABBJ anomaly can appear
only in the order n = 3 of the perturbation theory. A analysis of the standard model based on
this approach can be found in [47].

In [38] we have investigated scale anomaly from the point of view of Epstein–Glaser causal
approach using the perturbation scheme of Bogoliubov based on an expansion in the coupling
constant. We have found out the surprising result that scale invariance does not restrict the
presence of the anomalies in higher orders of perturbation theory. So, from the point of view
of Bogoliubov axioms, the elimination of anomalies in higher orders of perturbation theory is
still an open question.

The purpose of this paper is to investigate the generic form of the anomalies compatible
with the restrictions following from covariance properties and formal gauge invariance. Our
analysis is in the same spirit as the traditional analysis based on the Wess–Zumino consistency
conditions satisfied by the generating functional of the 1PI Feynman amplitudes [63]. The
classification of the anomalies is considered an important point in the usual BRST approach of
the renormalization program so we think that the same problem deserves a thorough analysis
also in the Epstein–Glaser–Scharf formulation. We must mention here that for the case of
QED and Yang–Mills theories with massless bosons (with Dirac matter) the absence of the
anomalies (in the Epstein–Glaser approach) can be proved by different methods (see [26, 53]
and [24, 25, 27, 28] respectively). For the case of QED a related proof appeared in [37].
Our strategy will be based exclusively on the Epstein–Glaser construction of the chronological
products for the free fields. The role of Feynman graph combinatorics is completely eliminated
in this analysis. We will use in fact a reformulation of the Epstein–Glaser formalism [22, 59]
which gives a prescription for the construction of the chronological products of the type
T (W1(x1), . . . ,Wn(xn)) for any Wick polynomialsW1(x1), . . . ,Wn(xn). The main point is to
formulate a proper induction hypothesis for the expression dQT (W1(x1), . . . ,Wn(xn)) where
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dQ is the free BRST operator [21]. In fact, it is necessary to make such a conjecture only for
some special cases of Wick polynomials: this idea was first implemented in [19] for a pure
Yang–Mills model, without Dirac fermions and without symmetry breaking. If T (x) is the
interaction Lagrangian (i.e. the first-order chronological product) one can prove the validity of
some ‘descent’ equations of the type

dQT (x) = i∂µT
µ(x) dQT

µ(x) = i∂νT
µν(x), . . .

dQT
µ1,...,µp−1(x) = i∂µpT

µ1,...,µp (x) dQT
µ1,...,µp (x) = 0.

(1.1)

In the QED the procedure stops after the first step (p = 1) and in the Yang–Mills case after
a two steps (p = 2). In general, one can consider the case when the descent stops after a finite
number of steps. In this case one has to give a proper conjecture for dQT (W1(x1), . . . ,Wn(xn))

only for W1(x1), . . . ,Wn(xn) of the type T (x), T µ(x), T µν(x), . . . . This was done in [19]
(see also [30] the footnote of p 4328); in our notations this conjecture has the form (3.14)
and (4.12).

In two previous papers [35, 36] we have showed that the elimination of the anomalies
in the second and third order of the perturbation theory gives important restrictions on the
parameters of the generalized Yang–Mills model. In particular, one has severe restrictions
on the gauge group. The goal is to prove that no anomalies can appear in higher orders of
the perturbation theory, probably for n � 6 as it is implied by the some arguments presented
in [50]. We prove here that this goal cannot be attained by purely algebraic methods based on
consistency conditions of Wess–Zumino type. However, if some additional assumptions are
made one can prove the absence of anomalies; this is the case for a pure Yang–Mills theory with
zero-mass bosons with SU(N)-invariance and no axial couplings of the Dirac matter fields.
This model was analysed in detail in [28] and [17] where the absence of anomalies was proved
using a charge conjugation invariance argument. We can show that the same argument works
in our approach also. So we may conclude that the main interest of our paper resides in the
investigation of the limits of the Wess–Zumino analysis of the anomalies in the framework of
the causal approach. We derive the explicit form of the Wess–Zumino consistency relations in
Epstein–Glaser–Scharf formulation of gauge models and we derive the most general form of
the anomalies from pure algebraic considerations (Lorentz covariance, symmetry and power
counting arguments). We work in the most general case of a model with massive and massless
bosons and with matter fields. We prove the absence of anomalies in the case of QED and
quantum chromodynamics (QCD) with SU(N)-invariance and no axial couplings; in this way
we rederive the results from [28] and [17] in a different way. For the general case, like in the
traditional approaches to renormalization theory, the problem remains open and the best one
can do is to hope for some non-renormalization theorems for higher orders of the perturbation
theory. This will be analysed in a forthcoming paper.

The structure of this paper is the following one. In the next section we make a brief review
of essential points concerning Epstein–Glaser resolution scheme of Bogoliubov axioms and
the standard model in the framework of the causal approach (for more details see [37] and [35]).
We emphasize that the main problem is to establish the factorization of the S-matrix to the
physical Hilbert space; in the formal adiabatic limit, this is the famous condition of gauge
invariance. Translated in terms of Feynman amplitudes this condition amounts, essentially,
to the so-called Ward–Takahashi identities, or—in the language of the Zürich group—the Cg
identities. In the next section we give the inductive hypothesis for QED and prove that there
are no anomalies. Next, we do the same thing for Yang–Mills theories. We use the conjecture
that the gauge invariance condition has the generic form given by the relation (4.12) (according
to [19]) and determine the generic form of the anomalies. When we particularize to the case
treated in [27,28] and [17], i.e. when only massless bosons are present we can see that we have
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essentially reobtained the results from these papers in a purely algebraic way.

2. Perturbation theory in the causal approach

We give here the essential ingredients of perturbation theory.

2.1. Bogoliubov axioms

We present the point of view of of Stora and Fredenhagen [8, 22, 59]; the main objects are
the chronological products. An equivalent point of view uses retarded products [58]. By
a perturbation theory in the sense of Bogoliubov we mean an ensemble of operator-valued
distributions T (W1(x1), . . . ,Wn(xn)) n = 1, 2, . . . acting in some Fock space and called
chronological products (where W1(x1), . . . ,Wn(xn) are arbitrary Wick monomials) verifying
the following set of axioms:

• Skew symmetry in all arguments W1(x1), . . . ,Wn(xn):

T (. . . ,Wi(xi),Wi+1(xi+1), . . . , ) = (−1)fifi+1T (. . . ,Wi+1(xi+1),Wi(xi), . . .) (2.1)

where fi is the number of Fermi fields appearing in the Wick monomial Wi .
• Poincaré invariance: for all (a,A) ∈ in SL(2,C) we have

Ua,AT (W1(x1), . . . ,Wn(xn))U
−1
a,A

= T (A ·W1(δ(A) · x1 + a), . . . , A ·Wn(δ(A) · xn + a)). (2.2)

Sometimes it is possible to supplement this axiom by corresponding invariance properties
with respect to inversions (spatial and temporal) and charge conjugation. For the standard
model only the PCT invariance is available. Also some other global symmetry with respect
to some internal symmetry group might be imposed.

• Causality: if xi � xj ,∀i � k, j � k + 1 then we have

T (W1(x1), . . . ,Wn(xn)) = T (W1(x1), . . . ,Wk(xk))T (Wk+1(xk+1), . . . ,Wn(xn)). (2.3)

• Unitarity: we define the anti-chronological products according to

(−1)nT̄ (W1(x1), . . . ,Wn(xn)) ≡
n∑
r=1

(−1)r
∑

I1,...,Ir∈Part ({1,...,n})
ε TI1(X1) · · · TIr (Xr) (2.4)

where we have used the notation

T{i1,...,ik}(xi1 , . . . , xik ) ≡ T (Wi1(xi1), . . . ,Wik (xik )) (2.5)

and the sign ε counts the permutations of the Fermi factors. Then the unitarity axiom is

T̄ (W1(x1), . . . ,Wn(xn)) = T (W ∗
1 (x1), . . . ,W

∗
n (xn)). (2.6)

• The ‘initial condition’

T (W(x)) = W(x). (2.7)

Remark 2.1. From (2.3) one can derive easily that if we have xi ∼ xj ,∀i � k, j � k + 1 then

[T (W1(x1), . . . ,Wk(xk)), T (Wk+1(xk+1), . . . ,Wn(xn))]∓ = 0. (2.8)
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One extends the definition of T (W1(x1), . . . ,Wn(xn)) for W1(x1), . . . ,Wn(xn) Wick
polynomials by linearity.

It can be proved that this system of axioms can be supplemented with the normalization
condition of the type

T (W1(x1), . . . ,Wn(xn)) =
∑

ε〈�, T (W ′
1(x1), . . . ,W

′
n(xn))�〉 : W ′′

1 (x1), . . . ,W
′′
n (xn))

(2.9)

where W ′
i and W ′′

i are Wick submonomials of Wi such that Wi = : W ′
iW

′′
i : the sign ε takes

care of the permutation of the Fermi fields and � is the vacuum state.
We can also include in the induction hypothesis a limitation on the order of singularity of

the vacuum averages of the chronological products associated with arbitrary Wick monomials
W1, . . . ,Wn; explicitly

ω(〈�, T (W1(x1), . . . ,Wn(xn))�〉) �
n∑
l=1

ω(Wl)− 4(n− 1) (2.10)

where byω(d)we mean the order of singularity of the (numerical) distribution d and byω(W)

we mean the canonical dimension of the Wick monomial W .

2.2. Massive Yang–Mills fields

In [34–36] we have justified the following scheme for the standard model (SM): we consider
the auxiliary Hilbert space Hgh,r

YM generated from the vacuum � by applying the free fields
Aaµ, ua, ũa, $a a = 1, . . . , r where the first one has vector transformation properties with
respect to the Poincaré group and the others are scalars. In other words, every vector field has
three scalar partners. Also ua, ũa a = 1, . . . , r are fermion and Aµ, $a a = 1, . . . , r are
boson fields.

We have two distinct possibilities for distinct indices a:
(I) Fields of type I correspond to an index a such that the vector field Aµa has non-zero

mass ma . In this case we suppose that all the other scalar partners fields ua, ũa, $a have the
same mass ma .

(II) Fields of type II correspond to an index a such that the vector field Aµa has zero mass.
In this case we suppose that the scalar partners fields ua, ũa also have the zero mass but the
scalar field$a can have a non-zero mass: mH

a � 0. It is convenient to use the compact notation

m∗
a ≡

{
ma for ma �= 0
mH
a for ma = 0.

(2.11)

Then the following equations of motion describe the preceding construction:

(� +m2
a)ua(x) = 0 (� +m2

a)ũa(x) = 0
(� + (m∗

a)
2)$a(x) = 0 a = 1, . . . , r.

(2.12)

We also postulate the following canonical (anti)commutation relations:

[Aaµ(x), Abν(y)] = −δabgµνDma
(x − y)× 1

{ua(x), ũb(y)} = δabDma
(x − y)× 1 [$a(x),$b(y)] = δabDm∗a (x − y)× 1

(2.13)

all other (anti)commutators are null.
In this Hilbert space we suppose given a sesquilinear form 〈·, ·〉 such that

Aaµ(x)
† = Aaµ(x) ua(x)

† = ua(x)

ũa(x)
† = −ũa(x) $a(x)

† = $a(x).
(2.14)

The ghost degree is±1 for the fields ua (resp. ũa), a = 1, . . . , r and 0 for the other fields.
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One can define the BRST gauge charge Q by

{Q,ua} = 0 {Q, ũa} = −i(∂µA
µ
a +ma$a)

[Q,Aµa ] = i∂µua [Q,$a] = imaua ∀a = 1, . . . , r
(2.15)

and

Q� = 0. (2.16)

Then one can justify that the physical Hilbert space of the Yang–Mills system is a factor
space

Hr
YM ≡ H ≡ Ker(Q)/Ran(Q). (2.17)

The sesquilinear form 〈·, ·〉 induces a bona fide scalar product on the Hilbert factor space.
The factorization process leads to the following physical particle content of this model:

• For ma > 0 the fields Aµa , ua, ũa, $a describe a particle of mass ma > 0 and spin 1;
these are the so-called heavy bosons [35].

• For ma = 0 the fields Aµa , ua, ũa describe a particle of mass 0 and helicity 1; the typical
example is the photon [34].

• Forma = 0 the fields$a describe a scalar field of massmH
a ; these are the so-called Higgs

fields.

This framework is sufficient for the study of the SM of the electro-weak interactions. To
include also QCD one must consider that there is a third case:

(III) Fields of type III correspond to an index a such that the vector fieldAµa has zero mass,
the scalar partners ua, ũa also have zero mass but the scalar field $a is absent.

In [55] and [30] the model is constructed somewhat differently: one eliminates the fields
of type II and includes a number of supplementary scalar bosonic fields ϕi of masses mi � 0.
In this framework one can consider for instance the very interesting Higgs–Kibble model in
which there are no zero-mass particle, so the adiabatic limit probably exists.

We can preserve the general framework with only two types of indices if we consider that
in case II there are in fact three subcases (i.e three types of indices a for which ma = 0):

(IIa) In this case Aaµ, ua, ũa, $a �≡ 0;
(IIb) In this case $a ≡ 0;
(IIc) In this case Aaµ, ua, ũa ≡ 0.
One must modify appropriately the canonical (anti)commutation relations (2.13) to avoid

contradiction for some values of the indices. One has some freedom of notation: for instance,
one can eliminate case (IIa) if one includes the first three fields fields in case (IIb) and the last
one in case (IIc). The relations (2.15) are not affected in this way.

Let us consider the set of Wick monomials W constructed from the free fieldsAµa , ua, ũa
and $a for all indices a = 1, . . . , r; we define the BRST operator dQ : W → W as the
(graded) commutator with the gauge charge operator Q. Then one can prove easily that

d2
Q = 0. (2.18)

The class of observables on the factor space is defined as follows: an operatorO : Hgh,r

YM →
Hgh,r

YM induces a well defined operator [O] on the factor space Ker(Q)/Im (Q) � Fm if and
only if it verifies

dQO|Ker(Q) = 0. (2.19)

Because of the relation (2.18) not all operators verifying the condition (2.19) are interesting. In
fact, the operators of the type dQO are inducing a null operator on the factor space; explicitly,
we have

[dQO] = 0. (2.20)
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We will construct a perturbation theory verifying Bogoliubov axioms using this set of
free fields and imposing the usual axioms of causality, unitarity and relativistic invariance on
the chronological products T (x1, . . . , xn). Moreover, we want that the result factorizes to the
physical Hilbert space in the formal adiabatic limit. This amounts to [3, 29]:

dQT (x1, . . . , xn) = i
n∑
l=1

∂

∂x
µ

l

T
µ

l (x1, . . . , xn) (2.21)

for some auxiliary chronological products T µl (x1, . . . , xn), l = 1, . . . , n which must be
determined recurringly, together with the standard chronological products.

If one adds matter fields we proceed as before. In particular, we suppose that the BRST
operator acts trivially on the matter fields. It seems that the matter field must be described
by a set of Dirac fields of masses MA,A = 1, . . . , N denoted by ψA(x). These fields are
characterized by the following relations [36]; here A,B = 1, . . . , N .

The equation of motion

(iγ · ∂ −MA)ψA(x) = 0. (2.22)

Canonical (anti)commutation relations

{ψA(x), ψB(y)} = δABSMA
(x − y) (2.23)

and all other (anti)commutators are null.
By a trivial Lagrangian we mean a Wick expression of the type

L(x) = dQN(x) + i
∂

∂xµ
Lµ(x) (2.24)

with L(x) and Lµ(x) some Wick polynomials. The first term in the previous formula gives
zero by factorization to the physical Hilbert space (according to a previous discussion) and
the second one gives also zero in the adiabatic limit; this justifies the elimination of such
expression from the first-order chronological product T (x).

One can prove [35,36] that the condition (2.21) for n = 1, 2, 3 determines quite drastically
the interaction Lagrangian (up to a trivial Lagrangian):

T (x) ≡ −fabc[ 1
2 : Aaµ(x)Abν(x)F

µν
c (x) : + : Aµa (x)ub(x)∂µũc(x) :]

+f ′abc[: $a(x)∂µ$b(x)A
µ
c (x) : −mb : $a(x)Abµ(x)A

µ
c (x) :

+mb : $a(x)ũb(x)uc(x) :]

+f ′′abc : $a(x)$b(x)$c(x) : +jµa (x)Aaµ(x) + ja(x)$a(x). (2.25)

Here

Fµν
a (x) ≡ ∂µAνa(x)− ∂νAµa (x) (2.26)

is the Yang–Mills field tensor and the so-called currents are

jµa (x) =: ψA(x)(ta)ABγ
µψB(x) : + : ψA(x)(t

′
a)ABγ

µγ5ψB(x) : (2.27)

ja(x) =: ψA(x)(sa)ABψB(x) : + : ψA(x)(s
′
a)ABγ5ψB(x) : (2.28)

and a number of restrictions must be imposed on the various constants (see [34–36] where
the condition of gauge invariance is analysed up to order 3). In particular the constants fabc
are completely antisymmetric and verify Jacobi identity. It follows [63] that they generate a
compact reductive Lie algebra.

Moreover, we can take T µ(x) to be

T µ(x) = fabc[: ua(x)Abν(x)F
νµ
c (x) : − 1

2 : ua(x)ub(x)∂
µ(x)ũc(x) :]

+ f ′abc[ma : Aµa (x)$b(x)uc(x) : + : $a(x)∂
µ$b(x)uc(x) :] + ua(x)j

µ
a (x).

(2.29)
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The expressions T (x) and T µ(x) are SL(2,C)-covariant, are causally commuting and are
Hermitean. Moreover we have the following ghost content:

gh(T (x)) = 0 gh(T µ(x)) = 1. (2.30)

Remark 2.2. The presence of indices of type (IIb) and (IIc) is taken into account by requiring
that the constants from T (x) are null if one of the indices a, b, c takes such values.

3. The renormalizability of quantum electrodynamics

3.1. The general setting

The case of QED is a particular case of the scheme described in the preceding section. We have
only one field of type (IIb), i.e. the triplet Aµ, u, ũ of null mass; they describe a system of
null-mass bosons of helicity 1 (i.e. photons). We also have only one Dirac field ψ describing
the electron. We suppose that in the Hilbert space Hgh generated by these fields from the
vacuum� we also have a sesqui-linear form 〈·, ·〉 and we denote the conjugate of the operator
O with respect to this form by O†. We characterize this form by requiring

Aµ(x)
† = Aµ(x) u(x)† = u(x) ũ(x)† = −ũ(x). (3.1)

The unitary operator realizing the charge conjugation is defined by

UCA
µ(x)U−1

C = −Aµ(x) UCu(x)U
−1
C = −u(x) UCũ(x)U

−1
C = −ũ(x)

UCψ(x)U
−1
C = γ0γ2ψ̄(x)

T UC� = �.
(3.2)

Now, we define in Hgh the supercharge according to

Q� = 0 (3.3)

and

{Q,u(x)} = 0 {Q, ũ(x)} = −i∂µAµ(x) [Q,Aµ(x)] = i∂µu(x). (3.4)

The expression of the BRST-operator dQ follows as a particular case of the corresponding
formulæ of the Yang–Mills case. From these properties one can derive

Q2 = 0 (3.5)

so we also have

Im (Q) ⊂ Ker(Q). (3.6)

By definition, the interaction Lagrangian is

T (x) ≡ e : ψ̄(x)γµψ(x) : Aµ(x) (3.7)

(here e is a real constant: the electron charge) and one can verify easily that we have the
covariance properties with respect to SL(2,C). The most important property is (2.21) for
n = 1:

dQT (x) = i
∂

∂xµ
T µ(x) (3.8)

with

T µ(x) ≡ e : ψ̄(x)γ µψ(x) : u(x). (3.9)

One can easily check that we have charge-conjugation invariance in the sense

UCT (x)U
−1
C = T (x) UCT

µ(x)U−1
C = T µ(x). (3.10)

We note that we also have

dQT
µ(x) = 0. (3.11)
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3.2. The main result

It is convenient to write the formulæ (3.8) and (3.11) in a compact way as follows. One denotes
by Ak(x), k = 1, . . . , 5 the expressions T (x), T µ(x); that is, the index k can take the values
L,µ according to the identification: AL(x) ≡ T (x), Aµ(x) ≡ T µ(x). Then we can write (3.8)
and (3.11) in the compact form

dQA
k(x) = i

5∑
m=1

ck;µm
∂

∂xµ
Am(x) k = 1, . . . , 5 (3.12)

for some constants ck;µm ; the explicit expressions can be obtained from the corresponding gauge
conditions. Only the expressions

cL;µν ≡ δµν (3.13)

are non-zero. Then we can prove the following result:

Theorem 3.1. One can chose the chronological products such that, beside the fulfilment of the
Bogoliubov axioms, the following identities are verified:

dQT (A
k1(x1), . . . , A

kp (xp))

= i
p∑
l=1

(−1)sl
∑
m

ckl ;µm

∂

∂x
µ

l

T (Ak1(x1), . . . , A
m(xl), . . . , A

kp (xp)) (3.14)

for all p ∈ N and all k1, . . . , kp = 1, . . . , 5. Here we have denoted

s0 ≡ 0 sl ≡
l−1∑
j=1

gh(Aj ) ∀l = 1, . . . , p. (3.15)

Proof. (i) We use induction. Suppose we have constructed the chronological products such
that that all conditions are satisfied up to order p = n−1. One can construct the chronological
products in order n such that all Bogoliubov axioms are satisfied, except the condition of
gauge invariance. This can be done directly from the Epstein–Glaser methods [37] or using
the extension method [22]. We include in the induction hypothesis the following form for the
chronological products:

T (T µ1(x1), . . . , T
µp (xp), T (xp+1), . . . , T (xn)) = : u(x1) . . . u(xp) :

×
∑
I,J,K

:
∏
i∈I

ψ̄(xi)t
µ1,...,µp;ρK
I,J,K (X)

∏
j∈J

ψ(xj ) ::
∏
k∈K

Aρk (xk) : (3.16)

where: (a) the sums runs over all distinct triplets I, J,K ⊂ {1, . . . , n} verifying |I | = |J | and
1, . . . , p �∈ K; (b) by ρK we mean the set {ρk}k∈K ; (c) the expression t

µ1,...,µp;ρK
I,J,K are numerical

distributions; more precisely, they take values in the matrix space MC(4, 4)⊗|I | and one can
suppose natural symmetry properties.

In particular we have

gh(T (Ak1(x1), . . . , A
kp (xp))) =

n∑
l=1

gh(Akl ). (3.17)

Moreover, the symmetry axiom implies relations of the type

T (A1(x1), A2(x2), . . .) = (−1)gh(A1)gh(A2)T (A2(x2), A1(x1), . . .). (3.18)
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From the induction procedure (or the extension method) one can easily prove the possible
obstructions to the gauge invariance condition (3.14) in order n have a particular structure. We
have

dQT (A
k1(x1), . . . , A

kn(xn))

= i
n∑
l=1

(−1)sl
∑
m

ckl ;µm

∂

∂x
µ

l

T (Ak1(x1), . . . , A
m(xl), . . . , A

kn(xn))

+P k1,...,kn (x1, . . . , xn) (3.19)

where P ...(X) ≡ P ...(x1, . . . , xn) are quasi-local operators called anomalies. They have the
following structure:

P(X) =
∑
L

[pL(∂)δ(X)]WL(X) (3.20)

where WL are Wick monomials and pL are polynomials in the derivatives of the type

pL(X) =
∑

|α|�deg (pL)

cL,α∂
α (3.21)

with the maximal degree restricted by

deg(pL) + ωL � 5. (3.22)

Moreover, we can easily obtain

gh(P k1,...,kn ) =
n∑
l=1

gh(Akl ) + 1. (3.23)

From (3.16) one can easily see that the anomalies depend only on the fields

Aµ, u, ∂νu, ψ, ∂νψ, ψ̄, ∂νψ̄. (3.24)

Finally, the anomalies can be chosen SL(2,C)-covariant and charge conjugation invariant

UCP
k1,...,kn (X)U−1

C = P k1,...,kn (X). (3.25)

(ii) We have a lot of restrictions on the anomalies. The most sever one comes from (3.22)
and (3.23): we obtain that for

n∑
l=1

gh(Akl ) � 5 (3.26)

there are no anomalies. From this restriction it follows that we have the following set of
relations with possible anomalies:

dQT (T (x1), . . . , T (xn))

= i
n∑
l=1

∂

∂x
µ

l

T (T (x1), . . . , T
µ(xl), . . . , T (xn)) + P1(x1, . . . , xn) (3.27)

dQT (T
µ(x1), T (x2), . . . , T (xn))

= − i
n∑
l=2

∂

∂xνl
T (T µ(x1), T (x2), . . . , T

ν(xl), . . . , T (xn)) + Pµ

2 (x1, . . . , xn) (3.28)

dQT (T
µ(x1), T

ν(x2), T (x3), . . . , T (xn))

= i
n∑
l=3

∂

∂x
ρ

l

T (T µ(x1), T
ν(x2), T (x3), . . . , T

ρ(xl), . . . , T (xn))

+ Pµν

3 (x1, . . . , xn) (3.29)
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dQT (T
µ(x1), T

ν(x2), T
ρ(x3), T (x4), . . . , T (xn))

= − i
n∑
l=4

∂

∂xσl
T (T µ(x1), T

ν(x2), T
ρ(x3), T (x4), . . . , T

σ (xl), . . . , T (xn))

+ Pµνρ

4 (x1, . . . , xn) (3.30)

dQT (T
µ(x1), T

ν(x2), T
ρ(x3), T

σ (x4), . . . , T (xn))

= i
n∑
l=5

∂

∂xλl
T (T µ(x1), T

ν(x2), T
ρ(x3), T

σ (x4), . . . , T
λ(xl), . . . , T (xn))

+ Pµνρλ

5 (x1, . . . , xn) (3.31)

where we use, as before, the convention
∑

∅ ≡ 0. We can assume that

P
µν

3 (X) = 0 |X| = 1

P
µνρ

4 (X) = 0 |X| = 2

P
µνρ

5 (X) = 0 |X| = 3

(3.32)

without losing generality. The anomalies verify the restrictions (3.22) and (3.23) and they
depend only on the fields (3.24).

From (3.18), we get the following symmetry properties:

P1(x1, . . . , xn) is symmetric in x1, . . . , xn (3.33)

P
µ

2 (x1, . . . , xn) is symmetric in x2, . . . , xn (3.34)

P
µν

3 (x1, . . . , xn) is symmetric in x3, . . . , xn (3.35)

P
µνρ

4 (x1, . . . , xn) is symmetric in x4, . . . , xn (3.36)

P
µνρσ

5 (x1, . . . , xn) is symmetric in x5, . . . , xn (3.37)

P
µν

3 (x1, . . . , xn) is antisymmetric in (x1, µ), (x2, ν) (3.38)

P
µνρ

4 (x1, . . . , xn) is antisymmetric in (x1, µ), (x2, ν), (x3, ρ) (3.39)

P
µνρσ

5 (x1, . . . , xn) is antisymmetric in (x1, µ), (x2, ν), (x3, ρ), (x4, σ ). (3.40)

(iii) If we apply the operator dQ to the anomalous relations (3.27)–(3.31) we easily obtain
some consistency relations quite analogous to the well known Wess–Zumino consistency
relations:

dQP1(x1, . . . , xn) = −i
n∑
l=1

∂

∂x
µ

l

P
µ

2 (xl, x1, . . . , x̂l, . . . , xn) (3.41)

dQP
µ

2 (x1, . . . , xn) = i
n∑
l=2

∂

∂xνl
P
µν

3 (x1, xl, x2, . . . , x̂l, . . . , xn) (3.42)

dQP
µν

3 (x1, . . . , xn) = −i
n∑
l=3

∂

∂x
ρ

l

P
µνρ

4 (x1, x2, xl, x3, . . . , x̂l, . . . , xn) (3.43)

dQP
µνρ

4 (x1, . . . , xn) = i
n∑
l=4

∂

∂xσl
P
µνρσ

5 (x1, x2, x3, xl, x4, . . . , x̂l, . . . , xn) (3.44)

dQP
µνρσ

5 (x1, . . . , xn) = 0. (3.45)

We will use repeatedly the identity
n∑
l=1

∂

∂x
ρ

l

δ(X) = 0 (3.46)
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where

δ(X) ≡ δ(x1 − xn) · · · δ(xn−1 − xn). (3.47)

If we take into account (3.22) and (3.23), the generic form of the anomalies is

P ...
l (X) = δ(X)W̃ ...

l (x1) +
n∑

p=1

[
∂

∂x
µ
p

δ(X)

]
W̃

...;µ
l;p (X) +

n∑
p,q=1

[
∂2

∂x
µ
p ∂xνq

δ(X)

]
W̃

...;µν
l;pq (X)

+
n∑

p,q,r=1

[
∂2

∂x
µ
p ∂xνq ∂x

ρ
r

δ(X)

]
W̃

...;µνρ
l;pqr (X)

+
n∑

p,q,r,s=1

[
∂2

∂x
µ
p ∂xνq ∂x

ρ
r ∂xσs

δ(X)

]
W̃

...;µνρσ
l;pqrs (X) (3.48)

where W̃ ...
... are some Wick polynomials with convenient symmetry properties. If we use (3.46)

we can eliminate all derivatives with respect to one variable, say x1 if we redefine conveniently
the expressions W̃ ...

... :

P ...
l (X) = δ(X)W...

l (x1) +
n∑

p=2

∂

∂x
µ
p

δ(X)W
...;µ
l;p (x1) +

n∑
p,q=2

∂2

∂x
µ
p ∂xνq

δ(X)W
...;µν
l;pq (x1)

+
n∑

p,q,r=2

∂2

∂x
µ
p ∂xνq ∂x

ρ
r

δ(X)W
...;µνρ
l;pqr (x1)

+
n∑

p,q,r,s=2

∂2

∂x
µ
p ∂xνq ∂x

ρ
r ∂xσs

δ(X)W
...;µνρσ
l;pqrs (x1). (3.49)

If f ∈ S(R4n) is arbitrary we have

〈P ...
l , f (X)〉 =

∫
dx f (x, . . . , x)W ...

l (x)−
n∑

p=2

∫
dx (∂pµf )(x, . . . , x)W

...;µ
l;p (x)

+
n∑

p,q=2

∫
dx (∂pµ∂

q
ν f )(x, . . . , x)W

...;µν
l;pq (x) + · · · . (3.50)

But the expressionsf (x, . . . , x), (∂pµf )(x, . . . , x), (∂
p
µ∂

q
ν f )(x, . . . , x), . . . p, q, . . . �

2 can be chosen arbitrarily, so we have

P ...
l (X) ⇐⇒ W...

l = 0 W
...;µ
l;p (X) = 0 W

...;µν
l;pq (X) = 0. (3.51)

As a consequence, every symmetry property

〈P ...
l (X), f

g(X)〉 = 〈P ...
l (X), f (X)〉 (3.52)

for g an arbitrary symmetry, will be equivalent to corresponding symmetry properties for the
Wick polynomials:

g ·W = W. (3.53)

(iv) Let us consider l = 3, 4, 5; because in this case gh(P ...
l ) � 3 in every Wick polynomial

W...
... from (3.49) we have at least two factors u (the third can be ∂u) so we get quite easily that

P ...
l (X) = 0 l = 3, 4, 5. (3.54)

In the cases l = 1, 2 we can still simplify the expressions of the anomalies by finite
renormalizations. We will indicate the corresponding analysis below. We note that from the
consistency conditions (3.41)–(3.45) only the first two are non-trivial.
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(v) Because gh(P2) = 2 the generic expression of P2 is

P
µ

2 (X) = δ(X)W
µ

2 (x1) +
n∑

p=2

∂

∂xνp
δ(X)W

µ;ν
2;p (x1) +

n∑
p,q=2

∂2

∂xνp∂x
ρ
q

δ(X)W
µ;νρ
2;pq (x1) (3.55)

(because the contribution with three partial derivatives corresponds to the Wick monomial
W

µ;νρσ
l;pqr ∼ : uu : = 0). If we use the symmetry property (3.34) we get

W
µ;ν
2;p = W

µ;ν
2;2 ≡ W

µ;ν
2 ∀p = 2, . . . , n

W
µ;νρ
2;pq = W

µ;νρ
2;22 ≡ W

µ;νρ
2 ∀p, q = 2, . . . , n

(3.56)

so we can write the preceding expression more simply:

P
µ

2 (X) = δ(X)W
µ

2 (x1) +
n∑

p=2

∂

∂xνp
δ(X)W

µ;ν
2 (x1) +

n∑
p,q=2

∂2

∂xνp∂x
ρ
q

δ(X)W
µ;νρ
2 (x1). (3.57)

If we use (3.46) then after some relabelling we obtain

P
µ

2 (X) = δ(X)W
µ

2 (x1) +
∂

∂xν1
[δ(X)Wµ;ν

2 (x1)] +
∂2

∂xν1∂x
ρ

1

[δ(X)Wµ;νρ
2 (x1)] (3.58)

and we can assume that

W
µ;νρ
2 = (ν ↔ ρ). (3.59)

The consistency relation (3.42) becomes equivalent to

dQW
µ

2 = 0 dQW
µ;ν
2 = 0 dQW

µ;νρ
2 = 0. (3.60)

The generic form of Wµ;νρ
2 is

W
µ;νρ
2 = c

µνρσ

1 : u∂σu : (3.61)

with cµνρσ1 a Lorentz tensor. If we define

U
µ;νρ
2 = c

µνρσ

1 : uAσ : (3.62)

then we have

dQU
µ;νρ
2 = −iWµ;νρ

2 . (3.63)

It follows that if we perform the finite renormalization:

T (T µ(x1), T (x2), . . . , T (xn))→ T (T µ(x1), T (x2), . . . , T (xn)) + i
∂2

∂xν1∂x
ρ

1

[
δ(X)U

µνρ

2 (x1)
]

(3.64)

we do not change the symmetry properties and the field structure. As a result we make

W
µ;νρ
2 = 0. (3.65)

In the same way, we have the generic expression

W
µ;ν
2 = c

µνρσ

2 : u∂ρuAσ : (3.66)

with cµνρσ2 a Lorentz invariant tensor. If we use charge conjugation invariance we obtain that
this expression must vanish. Another way to prove this is to obtain from (3.41) antisymmetry
in the first two indices and from the second equation (3.60) symmetry in the last two indices.
All these restrictions lead to cµνρσ2 = 0.

Finally we have the generic form

W
µ

2 = d1 : u∂µu : +d2 : u∂µuAρA
ρ : +d3 : u∂ρuAρA

µ : (3.67)

for some constants di . The first equation (3.60) gives d3 = 2d1. If we define

U
µ

2 = d1 : uAµ : +d2 : uAµuAρA
ρ : (3.68)
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we get

dQU
µ

2 = iWµ

2 . (3.69)

Now we perform the finite renormalization

T (T µ(x1), T (x2), . . . , T (xn))→ T (T µ(x1), T (x2), . . . , T (xn)) + iδ(X)Uµ

2 (x1) (3.70)

we do not affect the properties of the chronological products, we do not spoil the previous
finite renormalization and we make

P
µ

2 = 0. (3.71)

(vi) Because gh(P1) = 1 we have the generic expression

P1(X) = δ(X)W1(x1) +
n∑

p=2

∂

∂x
µ
p

δ(X)W
µ

1;p(x1) +
n∑

p,q=2

∂2

∂x
µ
p ∂xνq

δ(X)W
µν

1;pq(x1)

+
n∑

p,q,r=2

∂3

∂x
µ
p ∂xνq ∂x

ρ
r

δ(X)W
µνρ

1;pqr (x1)

+
n∑

p,q,r,s=2

∂4

∂x
µ
p ∂xνq ∂x

ρ
r ∂xσs

δ(X)W
µνρσ

1;pqrs(x1). (3.72)

The symmetry requirement (3.33) in x2, . . . , xn leads as above at a simpler form:

P1(X) = δ(X)W1(x1) +
∂

∂x
µ

1

[
δ(X)W

µ

1 (x1)
]

+
∂2

∂x
µ

1 ∂x
ν
1

[
δ(X)W

µν

1 (x1)
]

+
∂3

∂x
µ

1 ∂x
ν
1∂x

ρ

1

[
δ(X)W

µνρ

1 (x1)
]

+
∂4

∂x
µ

1 ∂x
ν
1∂x

ρ

1 ∂x
σ
1

[
δ(X)W

µνρσ

1 (x1)
]

(3.73)

and the Wick polynomials have convenient symmetry properties. We have the generic form

W
µνρσ

1 = c
µνρσ

3 u (3.74)

with cµνρσ3 a Lorentz covariant tensor. If we perform the finite renormalization

T (T µ(x1), T (x2), . . . , T (xn))→ T (T µ(x1), T (x2), . . . , T (xn))

+ i
∂3

∂xν1∂x
ρ

1 ∂x
σ
1

[
δ(X)W

µνρσ

1 (x1)
]

(3.75)

we do not affect the symmetry properties and the field dependence (3.24), we do not spoil the
previous two finite renormalizations, but as a result we eliminate the last term in the expression
of P1. We now impose the symmetry property (3.33) in x1, x2 and obtain that for n � 3

P1(X) = δ(X)W1(x1) (3.76)

and for n = 2

P1(X) = δ(X)W1(x1) +
∂

∂x
µ

1

[
δ(X)W

µ

1 (x1)
]

+
∂2

∂x
µ

1 ∂x
ν
1

[
δ(X)W

µν

1 (x1)
]

(3.77)

where

W
µ

1 = −∂νWµν

1 (3.78)

and the Wick monomial Wµν

1 can be chosen symmetric in the Lorentz indices.
Next, we use the consistency condition (3.41) and get

dQW1 = 0 dQW
µν

1 = 0. (3.79)
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The generic form of Wµν

1 is

W
µν

1 = c
µνρσ

3 : uAρAσ : +cµνρσ4 : ∂ρuAσ : (3.80)

with c
µνρσ

i being Lorentz invariant tensors symmetric in the first two indices. From the
last equation of (3.79) we obtain that the first contribution is zero and the second tensor is
antisymmetric in the last two indices. The Lorentz covariance makes this tensor also zero so
W

µν

1 = 0.
The generic form of W1 is

W1 = c1u + c2 : uAµA
µ : +c3 : ∂µuA

µ : +c4 : uψ̄ψ : +c5 : uψ̄γ5ψ : +c6 : uAµψ̄γ
µψ :

+c7 : uAµψ̄γ
µγ5ψ : +c8 : ∂µuA

µAρA
ρ : +c9 : uAµAµAρA

ρ : (3.81)

Now it is time to use charge conjugation invariance of the anomalies (3.25) for P1; we
easily get ci = 0, i = 1, 2, 4, 5, 7, 9. If we impose the first condition (3.79) we get c6 = 0. It
follows that we are left with

W1 = c3 : ∂µuA
µ : +c9 : ∂µuA

µAρA
ρ : (3.82)

If we define

U1 ≡ 1
2c3 : AµA

µ : + 1
4c9 : AµA

µAρA
ρ : (3.83)

we have

dQU1 = iW1. (3.84)

Finally, we preform the finite renormalization:

T (T (x1), . . . , T (xn))→ T (T (x1), . . . , T (xn)) + i δ(X)U1(x1) (3.85)

we do not affect the symmetry properties and the field structure (3.24) and we do not spoil the
previous three finite renormalizations. As a result we get

P1(X) = 0 (3.86)

and the proof is complete. �

Remark 3.2. One can show that one can give up the induction hypothesis (3.16). Indeed,
some new terms (containing a factor ∂ρAσ ) appear in the anomalies and they can be eliminated
using the same properties as before.

Remark 3.3. It is easy to see that the same pattern works for scalar electrodynamics also. A
minor modification appears for the expression of W1: the terms c4 − c7 must be replaced by

W1 = c4 : uφ̄φ : +c5 : uAµφ̄∂
µφ : +c6 : uAµ∂

µφ̄φ : (3.87)

The first contribution is cancelled by charge conjugation invariance and the last two by the
condition (3.79).

4. The structure of the anomalies in higher orders for the Yang–Mills model

4.1. The anomalous gauge equations

We give now the results for the Yang–Mills model as presented in section 2.2. By comparison
to the case of QED, two important modifications appear. The first one is the relation (3.11)
which is replaced by

dQT
µ(x) = i

∂

∂xν
T µν(x) (4.1)
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where

T µν(x) ≡ 1
2fabc : uaubF

µν
c : (4.2)

Let us note the antisymmetry property

T µν(x) = −T νµ(x) (4.3)

and the analogue of (3.11)

dQT
µν(x) = 0. (4.4)

We also have

gh(T µν(x)) = 2. (4.5)

The second change is the disappearance of charge conjugation invariance. Because of
these changes we will not be able to prove the disappearance of the anomalies in higher orders
of perturbation theory. Instead, we will be able to give the generic structure of these anomalies.
The computations are similar to those from the preceding section but are more complicated
from the combinatorial point of view. Because there are no essential new subtleties we will
give only the results.

There is an important case when the charge conjugation invariance survives, namely in
a pure Yang–Mills theory without γ5-couplings for the Dirac fields. This means that in the
formulæ from section 2.2 one should consider only fields of type (III), i.e. the scalar ghosts
are absent (this implies that we should also take the scalar current to be null ja = 0,∀a and
ma = 0,∀a) and the structure of the current (2.27) is much simpler: t ′a = 0,∀a, i.e. no axial
interaction is allowed. In this case, if the gauge group is SU(N) one can prove that charge
conjugation invariance exists [19, 28]. Namely for any simple compact Lie algebra one can
find a matrix Uab such that we have

Uabtb = −tTa ∀a; (4.6)

then, similarly to (3.2) we define the operator UC through the relations

UCA
µ
a (x)U

−1
C = UabA

µ

b (x) UCua(x)U
−1
C = Uabub(x)

UCũa(x)U
−1
C = Uabũb(x) UCψA(x)U

−1
C = γ0γ2ψ̄A(x)

T UC� = �
(4.7)

and one can easily check that we still have relations of the type (3.10) for the expressions
T (x), T µ(x), T µν restricted by the previous conditions (pure Yang–Mills and no γ5

interaction):

UCT (x)U
−1
C = T (x) UCT

µ(x)U−1
C = T µ(x) UCT

µν(x)U−1
C = T µν(x). (4.8)

Then one can prove, exactly as for QED that in this particular case we have the charge
conjugation invariance of the anomalies (3.25):

UCP
k1,...,kn (X)U−1

C = P k1,...,kn (X). (4.9)

We will prove later that in this case the anomalies can be eliminated.
Like in the case of QED we are looking for the Wess–Zumino consistency relations; for

this purpose we denote by Ak(x), k = 1, . . . , 11 the expressions T (x), T µ(x), T µν ; the
index k can take the values L,µ,µν according to the identificationsAL(x) ≡ T (x), Aµ(x) ≡
T µ(x), Aµν(x) ≡ T µν(x). Then we can write, in analogy to (3.12):

dQA
k(x) = i

∑
m

ck;µm
∂

∂xµ
Am(x) k = 1, . . . , 11 (4.10)

for some constants ck;µm ; the explicit expressions are

cL;µν ≡ δµν cν;µρσ ≡ 1
2

(
δνρδ

µ
σ − δµρ δ

ν
σ

)
(4.11)
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and the others are zero. Then we conjecture the following result: one can chose the
chronological products such that, beside the fulfilment of the Bogoliubov axioms, the following
identities are verified:

dQT (A
k1(x1), . . . , A

kp (xp)) = i
p∑
l=1

(−1)sl

×
∑
m

ckl ;µm

∂

∂x
µ

l

T (Ak1(x1), . . . , A
m(xl), . . . , A

kp (xp)) (4.12)

for all p ∈ N and all k1, . . . , kp = 1, . . . , 11. Here the expression sl has the same significance
as in the case of QED.

There are a number of facts which can be proved identically. First one can prove by
induction that one can choose the chronological products such that one has (3.17), the symmetry
property (3.18) and

T (T µν(x1), A2(x2), . . . , An(xn)) = −T (T νµ(x1), A2(x2), . . . , An(xn)). (4.13)

Next, we can prove that the chronological product can be chosen to depend on the following
fields:

Aµa , F
µν
a , ua, ũa, ∂µũa,$a, ∂µ$a,ψA,ψA. (4.14)

Suppose that we have proved the identity (4.12) up to the order n − 1; then in order n
we must have a relation of the type (3.19) where P...(X) ≡ P...(x1, . . . , xn) are the anomalies
having the structure (3.20). The maximal degree of the anomaly is also restricted by (3.22)
and we still have the constraint (3.23) coming from the ghost number counting. The anomalies
will depend on the following set of fields:

Aµa , ∂µA
ν
a, ∂ρF

µν
a , ua, ∂µua, ũa, ∂µũa, ∂µ∂νũa,$a, ∂µ$a, ∂µ∂ν$a, ψA, ∂µψA,ψA, ∂µψa

(4.15)

and the factor ∂µua can appear only once in any Wick term of the anomaly. Finally, the
anomalies can be chosen SL(2,C)-covariant.

From the restrictions (3.22) and (3.23) we obtain that the possible anomalies can appear
in the following relations:

dQT (T (x1), . . . , T (xn)) = i
n∑
l=1

∂

∂x
µ

l

T (T (x1), . . . , T
µ(xl), . . . , T (xn)) + P1(x1, . . . , xn)

(4.16)

dQT (T
µ(x1), T (x2), . . . , T (xn)) = i

∂

∂x
µ

1

T (T µν(x1), T (x2), . . . , T (xn))

− i
n∑
l=2

∂

∂xνl
T (T µ(x1), T (x2), . . . , T

ν(xl), . . . , T (xn))+P
µ

2 (x1, . . . , xn)(4.17)

dQT (T
µ(x1), T

ν(x2), T (x3), . . . , T (xn))

= i
∂

∂x
ρ

1

T (T µρ(x1), T
ν(x2), T (x3), . . . , T (xn))

− i
∂

∂x
ρ

2

T (T µ(x1), T
νρ(x2), T (x3), . . . , T (xn))

+ i
n∑
l=3

∂

∂x
ρ

l

T (T µ(x1), T
ν(x2), T (x3), . . . , T

ρ(xl), . . . , T (xn))

+ Pµν

3 (x1, . . . , xn) (4.18)
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dQT (T
µν(x1), T (x2), . . . , T (xn))

= i
n∑
l=2

∂

∂x
ρ

l

T (T µν(x1), T (x2), . . . , T
ρ(xl), . . . , T (xn))

+ Pµν

4 (x1, . . . , xn) (4.19)

dQT (T
µν(x1), T

ρ(x2), T (x3), . . . , T (xn))

= i
∂

∂xσ2
T (T µν(x1), T

ρσ (x2), T (x3), . . . , T (xn))

− i
n∑
l=3

∂

∂xσl
T (T µν(x1), T

ρ(x2), . . . , T
σ (xl), . . . , T (xn))

+ Pµνρ

5 (x1, . . . , xn) (4.20)

dQT (T
µ(x1), T

ν(x2), T
ρ(x3), T (x4), . . . , T (xn))

= i
∂

∂xσ1
T (T µσ (x1), T

ν(x2), T
ρ(x3), T (x4), . . . , T (xn))

− i
∂

∂xσ2
T (T µ(x1), T

νσ (x2), T
ρ(x3), T (x4), . . . , T (xn))

+ i
∂

∂xσ3
T (T µ(x1), T

ν(x2), T
ρσ (x3), T (x4), . . . , T (xn))

− i
n∑
l=4

∂

∂xσl
T (T µ(x1), T

ν(x2), T
ρ(x3), T (x4), . . . , T

σ (xl), . . . , T (xn))

+ Pµνρ

6 (x1, . . . , xn) (4.21)

dQT (T
µν(x1), T

ρσ (x2), T (x3), . . . , T (xn))

= i
n∑
l=3

∂

∂xλl
T (T µν(x1), T

ρσ (x2), T (x3), . . . , T
λ(xl), . . . , T (xn))

+ Pµνρσ
7 (x1, . . . , xn) (4.22)

dQT (T
µν(x1), T

ρ(x2), T
σ (x3), T (x4), . . . , T (xn))

= i
∂

∂xλ2
T (T µν(x1), T

ρλ(x2), T
σ (x3), T (x4), . . . , T (xn))

− i
∂

∂xλ3
T (T µν(x1), T

ρ(x2), T
σλ(x3), T (x4), . . . , T (xn))

+ i
n∑
l=4

∂

∂xλl
T (T µν(x1), T

ρ(x2), T
σ (x3), T (x4), . . . , T

λ(xl), . . . , T (xn))

+ Pµνρσ

8 (x1, . . . , xn) (4.23)

dQT (T
µ(x1), T

ν(x2), T
ρ(x3), T

σ (x4), . . . , T (xn))

= i
∂

∂xλ1
T (T µλ(x1), T

ν(x2), T
ρ(x3), T

σ (x4), T (x5), . . . , T (xn))

− i
∂

∂xλ2
T (T µ(x1), T

νλ(x2), T
ρ(x3), T

σ (x4), T (x5), . . . , T (xn))

+ i
∂

∂xλ3
T (T µ(x1), T

ν(x2), T
ρλ(x3), T

σ (x4), T (x5), . . . , T (xn))
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− i
∂

∂xλ4
T (T µ(x1), T

ν(x2), T
ρ(x3), T

σλ(x4), T (x5), . . . , T (xn))

+ i
n∑
l=5

∂

∂xλl
T (T µ(x1),T

ν(x2),T
ρ(x3),T

σ (x4), T (x5), . . . ,T
λ(xl), . . . ,T (xn))

+ Pµνρλ

9 (x1, . . . , xn) (4.24)

where we can assume that

P
µν

3 (X) = 0 P
µνρ

5 = 0 P
µνρσ
7 = 0 |X| = 1

P
µνρ

6 (X) = 0 P
µνρσ

8 = 0 |X| � 2

P
µνρσ

9 (X) = 0 |X| � 3

(4.25)

without losing generality.
From (3.18), we get the following symmetry properties:

P1(x1, . . . , xn) is symmetric in x1, . . . , xn (4.26)

P
µ

2 (x1, . . . , xn) is symmetric in x2, . . . , xn (4.27)

P
µν

3 (x1, . . . , xn) is symmetric in x3, . . . , xn (4.28)

P
µν

4 (x1, . . . , xn) is symmetric in x2, . . . , xn (4.29)

P
µνρ

5 (x1, . . . , xn) is symmetric in x3, . . . , xn (4.30)

P
µνρ

6 (x1, . . . , xn) is symmetric in x4, . . . , xn (4.31)

P
µνρσ
7 (x1, . . . , xn) is symmetric in x3, . . . , xn (4.32)

P
µνρσ

8 (x1, . . . , xn) is symmetric in x4, . . . , xn (4.33)

P
µνρσ

9 (x1, . . . , xn) is symmetric in x5, . . . , xn (4.34)

we also have

P
µν

3 (x1, . . . , xn) is antisymmetric in (x1, µ), (x2, ν) (4.35)

P
µν

4 = −P νµ

4 (4.36)

P
µνρ

5 = −P νµρ

5 (4.37)

P
µνρ

6 (x1, . . . , xn) is antisymmetric in (x1, µ), (x2, ν), (x3, ρ) (4.38)

P
µνρσ
7 = −P νµρσ

7 = −Pµνσρ
7 (4.39)

P
µνρσ
7 (x1, x2, . . . , xn) = P

ρσµν
7 (x2, x1, . . . , xn) (4.40)

P
µνρσ

8 = −P νµρσ

8 (4.41)

P
µνρσ

8 (x1, x2, x3, . . . , xn) = −Pµνσρ

8 (x1, x3, x2, . . . , xn) (4.42)

P
µνρσ

9 (x1, . . . , xn) is antisymmetric in (x1, µ), (x2, ν), (x3, ρ), (x4, σ ).

(4.43)

Let us note that for n = 2 only the first five relations (4.16)–(4.20) have to be checked;
this can be done by some long but straightforward computations.

4.2. The generic structure of the anomalies

If we apply the operator dQ to the anomalous relations (4.16)–(4.24) we easily obtain again
consistency relations of the Wess–Zumino type:

dQP1(x1, . . . , xn) = −i
n∑
l=1

∂

∂x
µ

l

P
µ

2 (xl, x1, . . . , x̂l, . . . , xn) (4.44)
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dQP
µ

2 (x1, . . . , xn) = −i
∂

∂xν1
P
µν

4 (x1, . . . , xn)

+ i
n∑
l=2

∂

∂xνl
P
µν

3 (x1, xl, x2, . . . , x̂l, . . . , xn) (4.45)

dQP
µν

3 (x1, . . . , xn) = −i
∂

∂x
ρ

1

P
µρν

5 (x1, . . . , xn) + i
∂

∂x
ρ

2

P
νρµ

5 (x2, x1, x3, . . . , xn)

− i
n∑
l=3

∂

∂x
ρ

l

P
µνρ

4 (x1, x2, xl, x3, . . . , x̂l, . . . , xn) (4.46)

dQP
µν

4 (x1, . . . , xn) = −i
n∑
l=2

∂

∂x
ρ

l

P
µνρ

5 (x1, xl, x2, . . . , x̂l, . . . , xn) (4.47)

dQP
µνρ

5 (x1, . . . , xn) = −i
∂

∂xσ2
P
µνρσ
7 (x1, . . . , xn)

+ i
n∑
l=3

∂

∂xσl
P
µνρσ

8 (x1, x2, xl, x3, . . . , x̂l, . . . , xn) (4.48)

dQP
µνρ

6 (x1, . . . , xn) = −i
∂

∂xσ1
P
µσνρ

8 (x1, . . . , xn)

+ i
∂

∂xσ2
P
νσµρ

8 (x2, x1, x3, . . . , xn)− i
∂

∂xσ3
P
ρσµν

8 (x3, x2, x1, x4, . . . , xn)

+ i
n∑
l=4

∂

∂x
ρ

l

P
µνρσ

9 (x1, x2, x3, xl, x4, . . . , x̂l, . . . , xn) (4.49)

dQP
µνρσ

i (x1, . . . , xn) = 0 i = 7, 8, 9. (4.50)

After a long computation (using the symmetry properties, the ghost number restrictions,
etc and making some convenient finite renormalizations) one can determine the generic form
of the anomalies. One starts from a generic form of the same type as in the case of QED for
all anomalies P ...

i , i = 1, . . . , 9 and determines that

P ...
i = 0 i = 3, . . . , 9 (4.51)

and P ...
i , i = 1, 2 can be chosen of the form

P1 = δ(X)W1(x1) P
µ

2 = δ(X)W
µ

2 (x1). (4.52)

The gauge invariance condition reduces to

dQW1 = i∂µW
µ

2 dQW
µ

2 = 0. (4.53)

We now give the generic form of the Wick polynomials Wi, i = 1, 2 fulfilling these
conditions. First we have

W
µ

2 = cabcd : uaub$c∂
µ$d : +cabc : uaub∂

µ$c :

+cab;AB : uaubψAγ
µψB : +c′ab;AB : uaubψAγ

µγ5ψB : (4.54)

where

cabcd = −(c↔ d) = −(a ↔ b) cab;AB = −(a ↔ b) c′ab;AB = −(a ↔ b)

cabcd = 0 mc +md � 0 cabc = 0 ma +mb +mc � 0.
(4.55)
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Finally we have

W1 = 2cabcd : uaA
ρ

b$c∂ρ$d : +2cabc : uaA
ρ

b∂ρ$c : +2cab;AB : uaA
ρ

bψAγρψB :

+2c′ab;AB : uaA
ρ

bψAγργ5ψB : +i
∑
mb �=0

1

mb

(MA −MB)cab;AB : ua$bψAψB :

+i
∑
mb �=0

1

mb

(MA +MB)c
′
ab;AB : ua$bψAγ5ψB :

+g′abc
(
: ua∂ρ$b∂

ρ$c : +mbmc : uaA
ρ

bAcρ : −2mb : uaA
ρ

b∂ρ$c :
)

+gabc : ua$b$c : +gabcd : ua$b$c$d : +gabcde : ua$b$c$d$e :

+da;AB : uaψAψB : +d ′a;AB : uaψAγ5ψB :

+habc : uaF
ρσ

b Fcρσ : +h′abcεµνρσ : uaF
µν

b F ρσ
c : (4.56)

where

gabc = 0 ma +mb +mc > 0 gabcd = 0 ma +mb +mc +md > 0

habc = 0 h′abc = 0 ma > 0 da;AB = 0 d ′a;AB = 0 ma > 0.
(4.57)

One can prove that these anomalies cannot be eliminated by further redefinitions of the
chronological products (so they are representatives modulo anomalies of the type dQA+∂µAµ);
it follows there are no obvious arguments for the elimination of these anomalies. We remark
upon a very interesting fact: if all the bosons are heavy, then there the expression of the
anomalies simplifies considerably. Also in the case when only massless bosons are present the
expression of the anomaly simplifies drastically. In fact, in this case, only indices of type (IIb)
are present (see section 2.2), i.e. we do not have the scalar fields $a at all. Moreover, all
masses ma are null. One can obtain quite easily the structure of the anomalies in this case:

W
µ

2 = cab;AB : uaubψAγ
µψB : +c′ab;AB : uaubψAγ

µγ5ψB : (4.58)

and

W1 = 2cab;AB : uaA
ρ

bψAγρψB : +2c′ab;AB : uaA
ρ

bψAγργ5ψB : +da;AB : uaψAψB :

+d ′a;AB : uaψAγ5ψB : +habc : uaF
ρσ

b Fcρσ : +h′abcεµνρσ : uaF
µν

b F ρσ
c : (4.59)

with the following restrictions:

cab;AB = −(a ↔ b) c′ab;AB = −(a ↔ b)

(MA −MB)cab;AB = 0 (MA +MB)c
′
ab;AB = 0.

(4.60)

We have essentially obtained the results presented in [27,28] and [17] in a purely algebraic
way. In [27, 28] it is argued that in some cases the uFF anomalies are absent and in [17] the
argument is extended to the Dirac contributions. This can be done if we assume that the gauge
group is SU(N) and no axial interaction in allowed. Let us give the proof of the same result
using our formalism. First, one can prove by induction that the γ5 terms from the preceding
expressions are also absent, i.e. we have

W
µ

2 = cab;AB : uaubψAγ
µψB : (4.61)

and

W1 = 2cab;AB : uaA
ρ

bψAγρψB : +da;AB : uaψAψB :

+habc : uaF
ρσ

b Fcρσ : +h′abcεµνρσ : uaF
µν

b F ρσ
c : (4.62)

Now we can also use an argument based on charge conjugation invariance. We refer to
some group-theoretical results proved in [28] and [17]. First, one can prove that the expressions
habc and h′abc, respectively, must be linear combinations of the completely antisymmetric and
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the completely symmetric tensors fabc and dabc. Because of the obvious symmetry property
of the constants habc and h′abc they are necessarily proportional to dabc. But in this case one
uses the well known identity

Uaa′Ubb′Ucc′da′b′c′ = −dabc (4.63)

and shows that the charge conjugation invariance (4.8) implies that we must have habc =
h′abc = 0; (this is a particular case of the even–odd Furry theorem from the appendix of [28]).
Other group-theoretical considerations give the structure of theN×N -matrices with elements
da;AB and cab;AB , namely we must have da = Cta, cab = C ′fabctc (see (A.11) and (A.12)
of [17]); in the last case we have used the antisymmetry property in the two indices. Now if
we use the relation (4.6) and

Uaa′Ubb′Ucc′fa′b′c′ = fabc (4.64)

we find out that we also have da = 0, cab = 0.
The result of this discussion reproduces the very important results of [28] and [17]: the pure

Yang–Mills model with SU(N) gauge group and without axial interaction is gauge-invariant
in all orders of perturbation theory, i.e. one can chose the chronological products such that the
relations (4.12) are fulfilled for any n ∈ N

∗. For an arbitrary model with spontaneously broken
symmetry and with axial coupling the previous result cannot be obtained by purely algebraic
considerations based on Wess–Zumino consistency relations.

We close with another interesting remark connected to the geometric interpretation of the
anomalies. Let us define the following differential forms:

Tp(X) ≡
∑

T (Ak1(x1), . . . , A
kp (xp)) dx1;k1 ∧ · · · ∧ dxp;kp (4.65)

where, in general, we have defined

dxL ≡ dx ≡ dx0 ∧ · · · ∧ dx3 dxµ ≡ i∂µ dx dxρσ ≡ i∂ρ i∂σ dx. (4.66)

It is a very interesting fact that the following relation is true:

dxρ ∧ dxi =
∑
j

c
j ;ρ
i dxj (4.67)

where the constants cj ;ρi are exactly the same as those appearing in (4.11). Then it is easy to
prove that the induction hypothesis can be compactly written as

dQTp(X) = i dTp(X) p = 1, . . . , n− 1 (4.68)

and the anomalous gauge identity in order n is

dQTn(X) = i dTn(X) + Pn(X) (4.69)

here the anomaly Pn(X) has an expression of the type (4.65)

Pp(X) ≡
∑

P k1,...,kp (X) dx1;k1 ∧ · · · ∧ dxp;kp (4.70)

with the identifications

PL,...,L = P1 Pµ,L,...,L = P
µ

2 Pµ,ν,L,...,L = P
µν

3

Pµν,L,...,L = P
µν

4 Pµν,ρ,L,...,L = P
µνρ

5 Pµ,ν,ρ,L,...,L = P
µνρ

6

Pµν,ρσ,L,...,L = P
µνρσ
7 Pµν,ρ,σ,L,...,L = P

µνρσ

8 Pµ,ν,ρ,σ,L,...,L = P
µνρσ

9 .

(4.71)

So, the expressions Pp(X) are differential forms with coefficients quasi-local operators.
Let us denote by A this class of differential forms. From (4.69) we easily obtain the consistency
equation

dQPn(X) + i dPn(X) = 0 (4.72)
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which is the compact form of the relations (4.44)–(4.50). A more explicit form is

dQP
i1,...,in (X) = −i

n∑
l=1

(−1)sl cil ;µk

∂

∂x
µ

l

P i1,...,il−1,k,il+1,...,in (X). (4.73)

One can ‘solve’ this equation using the homotopy operator p of the de Rham complex:
we have

Pn(X) = d(pPn(X)) + i dQ(pPn(X)). (4.74)

It is tempting to argue that by the finite renormalization

Tn(X)→ Tn(X) + ipPn(X) (4.75)

the anomalies are eliminated. However, one can check that if we apply the homotopy operator
p on an element from A we do not obtain a element from A. It follows that the finite
renormalization given above is not legitimate and the argument has to be modified somehow.
However, let us notice the interesting fact that the usual expression of the homotopy operator for
the de Rham complex is constructed using the action of the dilation group. This is in agreement
to the role played by this group in the traditional approach to the non-renormalizability
theorems.
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(Zürich University preprint ZU-TH-10/95)
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[25] Dütsch M, Hurth T, Krahe F and Scharf G 1994 Causal construction of Yang–Mills theories II Nuovo Cimento

A 107 375–406
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